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The computationally-determined limiting performance of shock
isolation systems has been a useful tool in providing
characteristics of optimal shock isolation. The limiting
performance is defined as the minimum peak value of certain
responses while other system responses are constrained. As
is the case with most optimization problems, the

"trajectory" in reaching the minimum performance index (peak

response values} is unique, as is the minimum performance
index itself. However, the responses of the system after

the minimum performance index is achieved are not
single-valued. This paper shows how unique isolator forces
and corresponding responses can be chosen by superimposing a
minimum settling time onto the limiting performance of the
shock isolation system. Basically, this means that the

system which has reached the peak value of the performance
index is "settled" to rest in minimum time.

INTRODUCTION

The limiting performance of a system is its absolute optimal response
characteristics. It is computed by replacing those portions of a system being

designed by active generic isolator forces. These isolator forces are then

obtained so as to minimize a given performance index while typically satisfying

bounding constraints on response variables or isolator force magnitudes. Since

isolator forces are not restricted to represent any particular design elements

during the optimization procedure, the resulting limiting performance response is
optimal over all possible design configurations. No conditions are placed on the

number or type of elements which are replaced by isolators; they my be active,

pasive, or nonlinear. For the class of problems treated in this paper, the

performance index and the constraints are linear combinations of system response
variables and isolator forces. Also, the equations of motion are linear, so that

it is possible to formulate the optimization procedure as a linear programming

problem.

The limiting performance may be illustrated graphically by plotting the

performance versus a constraint bound. If the performance index is chosen to

minimize the maxmum response of a system subject to a prescribed constraint, the

resulting tradeoff curve depicted in Fig. 1 gives the limiting performance of the

system. The limiting performance charateristics are of considerable value to the

mechanical system designer. First of all, they indicate from the design

specifications alone whether a proposed design is feasible. Second, during the

design cycle, they provide a measure of the success of the design configurations

under consideration. Reference [1] describes limiting performance as applied shock

isolation systems. Steady state systems [2], techniques for using general purpose
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structural analysis computer programs to generate the equations of motion for

limiting performance studies [3], and the use of limiting performance

characteristics in identifying the optimum design of suspension systems for

rotating shafts [d] have been treated.

Performance

Index

Curve

Constraint

Fig. 1 Limiting Performance Characteristics

Although the limiting performance provides useful information, it has been

noticed that the min-max norm of the limiting performance gives a unique solution

only until the peak value of the performance index is achieved. A non-unique

solution occurs after the peak value. For the tradeoff studies, the response after

the peak is o£ little importance as long as the unique performance index is

obtained. However, rapid settling of the disturbed system due to the external

disturbance is often desired. Therefore, it is necessary to impose an additional

measure of performance to obtain a unique solution after the peak value of the

performance index is achieved. The response after the peak is selected to achieve

the minimum settling time. Two different approaches can be used to achieve this

goal [5]. This paper deals with the formulation using the performance index and

its application to the shock isolation problems.

PROBLENSTATEMENT

A linear vibrating system with n degrees of freedom subject to arbitrary

external excitations f{t) and isolator forces u{t) is expressed in the first order

system of differential equations

s(t) = As(t) + B_(t) + C£(t) (1)

where s(t) is an n-dimensional state vector and A, B, and C are n x n, n x nu and n

x nf constant coefficient matrices. The quantities nu and n£ are the number of

isolator forces and excitations, respectively. Constraints are imposed on the
dynamic system under study. The format of the constraints is

xl.-<Q1 + + %£ -<xv for t o _( t ( tf (2)

where £L and £U are nc-dimensional lower and upper constraint vectors; QI' Q2' and

Q3 are nc x n, nc x nu, and nc x nf constant coefficient matrices; and to and tf
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are the given initial and final times.

The problem is to find an optimal isolator force u(t) which will transfer an

initial state S(to) -- -oS to a desired final state s(tf) = sf in the minimum time

while extremizing a given performance index of the form

max T T
Minimi e J = (t o _<t _<tfl T_ ÷ + D3£1) (3)

where RI' R2' and _3 are given n. nu, and nf constant coefficient vectors. Since

the min-maxnorm of the limiting performance gives a unique solution only until the

peak value o£ the performance index is achieved, an additional measure of

performance is desired to obtain a unique solution after the peak value. The

resulting unique solution is referred to as limiting-performance/minimum-time

(LP/gF) solution.

LINEAR PROO_aJ_ING FOP_ULATION

To obtain the LP/MT solution, the performance index given in Eq. (3) is

modified. Two sets of performance indices are considered. One set o£ them,

referred to as the transient performance index, is given by

max T T
Jt = to -( t ( tt JuT + n2u + n3£J (4)

where tt is the time limit for the transient period. The other set, referred to as

the steady-state performance index is defined as

Now, the "global" performance index is defined by

J = Jt + Js (6)

Note that the vectors R 1, P2' and R3 are not changed in Eqs. (4) and (5).

To place, the optimization procedure into the standard linear programming form,

the system in Eq. (1) is discretized using uniform time intervals to obtain a set

of state difference equations

s(k+l) = Gs(k) + H[Bu(k) + C£(k)] (7)

where _s(k) = state vector at time t = tk

u(k), _f(k) = isolator force and external excitation vector at t = tk,

assumed to be constant over the interval tk < t < tk+ 1

Ah
G--e

H = fh eA(h-V)dv
_0
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h = time step = tk+ 1 - tk (k=l, 2 ..... N-l)

The state vector, at any time t = tk. can be expressed as a function of the initial

state s{1) and the isolator force history u(1), u{2) ..... u(N-1) and the external

excitation f(1), f(2) ..... f(N-l). For k = 1,2 ..... N-I

k-1

s(k+l) = Gks(1) + Y.Gk-JH[BuCj) + C_f(J)] + H[BuCk) + C£(k)]

j=l

(s)

The constraints in Eq. (2) are discretized similarly

YL(k) _ Ql_(k ) + Q_Ck) + Q3fCk ) _ _u(k) for k = 1,2 .....N-I (9)

The objective functions of Eqs. (4) and (5), which reflect the min-max norm, are

discretized and converted into a constraint set. Since Jt is the maximum value of

for t < t < tt0 --

for t t _ t _ tf

(10)

To place this optimization problem into a standard linear programming form,
define

z

Jt

= Js

u

(11)

where u = [ u(1)T uc2)T ... u(N-1)T IT

and
T
c =[1 1 0 .... O]

(12)

(13)

Then the linear programming problem is to minimize

J = cTz (14)

subject to the constraints

Hz < b (15)

where Hand b represent constraints of Eqs. (9) and (I0).

The minimum time (tmin) is the smallest time which will make the global

performance index of Eq. (6) stay within a desired value. Since the performance
index can be computed for each iteration, an interpolation method such as the
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secant method or simple bisection method [6] can be employed to find tmln

efficiently.

NUNERICAL EXAMPLES

Example I: A Single DOF System Subject to a Shock Velwave

A single degree-of-freedom (IX)F) system composed of a mass m and supporting

structure {Fig. 1) is subject to the horizontal shock velwave of Fig. 2.

I, ___ ,I--*z

-====4

Fig. 1 A Single DOF Syatem
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Note: Slope {S}, Time of Arrival (TOA}, and Total = 1 + 2

Fig. 2 Shock Velwave

Suppose the acceleration of the mass is to be limited to 15g {g = acceleration of

gravity}. The optimal isolator force u_(t) which minimizes the rattlespace between

the mass and the supporting structure is desired.

The equation of motion is

tt

z = u/m = U (16)

The system is assumed to be at rest initially.
minimized is

The performance index to be

max Iz - Yl {17)
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where

tf
y = it v(t) dt

0

(18)

and the constraint on the peak acceleration would be

[z[ _( 15g (19)

Define a state vector

s=[z z y]T (20)

The problem can now be transformed into the standard LP/MT isolator problem format

described previously. The optimal isolator is sought, which will reduce the

disturbed rattlespace to zero in minimum time while minimizing the performance

index and satisfying the constraints. The resulting time responses are shown in

Fig. d. The performance index is 0.914 in and the minimum time is 0.17 sec.

Example 2: Two DOF Model of a Flexible Package Structure

A two mass model of a flexible package structure with a rigid base is shown in

Fig. 5.

Xi

Fig. 5 Two DOF Flexible Package Model

The base is subject to external displacement which is described by

f(t) = 12t2e -t [in] (21)

The optimal isolator force is sought which will reduce the absolute displacement of
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m2 (z2) within S_ of the peak value of the external disturbance f(t) in minimum

time.

Isolator,U(t)
15g

-15g

[in]

g
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100
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0

-100
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0

DisplacementofMass,z(t)
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..__..-----__

___Di_placement ofSupportingStructure,y(t)

41

IIlj

 l.j

Rattlespace,z(t)-y(t)

0 Time[secl 1,0

Fig. d Resulting Time Responses for Example 1
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The performance index is to, minimize-

j = maxtlz2(t)l (22)

while satisfying prescribedconstraints

]x2] = I,.2 - ,.1] -<
Ixll = I"-i.- f l _<Xl.

(23)

The equations of motion can be written as

/.Lz I + _,(z I - z2) = U
te

z 2 + _(z I - z2) = 0

(24)

where

= ml/m 2

= k/m 2

(25)

Let

s = E z 1 z 1 z 2 z 2 IT (26)

Then the equations of motion, the performance index, and the constraints as given

by Eqs. (24), (22), and (23), respectively, can be converted into the standard

LP/MT format. Choose Uma x = 2g Ein/sec 2 , Xlmax = 2 [in], X2max = 1 [in], U =

100, and k = 6.28 [rad/sec2]. The solution for the optimal LP/t4T isolator shows

that the performance indices are Jt = 5.729 Ein] and Js = 0.099 [in], and the

minimum time is t.. = 12.0 [sec]. Figure 6 shows the time responses.
mln

CDNCLUS IONS

The objective of this study was to show how unique isolator forces and

corresponding responses could be chosen by superimposing a minimum settling time

onto the limiting performance of the shock isolation systems. The limiting

performance / minimum time characteristics were computed by linear programming. It
was demonstrated that the superimposition of minimum settling time provided not

only the value of the optimal performance index but also the minimum settling time

which, in turn, gives unique solutions for shock isolation problems. The optimal
LP/_fr isolator characteristics can be used to check the feasibility of proposed

design requirements and to measure the success of a given design during the design

process by comparing the response of the designed system with that of LP/t4T
characteristics. Furthermore, the LP/_4T charateristics would provide with a

designer an insight to build a near optimal:shock isolation system.
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Fig. 6 Resulting Time Responses for F..xample 2
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